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The weak-noise limit of Fokker Planck models leads to a set of nonlinear 
Hamiltonian canonical equations. We show that the existence of a nonequilib- 
rium potential in the weak-noise limit requires the existence of whiskered tori in 
the Hamiltonian system and, therefore, the complete integrability of the latter. A 
specific model is considered, where the Hamiltonian system in the weak-noise 
limit is not integrable. Two different perturbative solutions are constructed: the 
first solution describes analytically the breakdown of the whiskered tori due to 
the appearance of wild separatrices; the second solution allows the analytic 
construction of an approximate nonequilibrium potential and an asymptotic 
expression for the probability density in the steady state. 

KEY WORDS: Fokker-Planck processes; dynamical systems; nonequilib- 
rium potentials; weak-noise limit; integrability of Hamiltonian systems; 
whiskered tori. 

1. INTRODUCTION 

The Fokker-Planck equation is a well-known and useful tool for investigat- 
ing the dynamics of weak fluctuations in macroscopic systems. (1-5) Exam- 
ples of its applications include not only noise in thermodynamic systems, 
but also nonequilibrium systems in optics, such as lasers or multistable 
passive optical devices or electronic systems, such as Josephson devices. 

Quite often in such applications the noise is sufficiently weak that a 
full solution of the Fokker-Planck equation is not necessary. Instead, it is 
sufficient to construct asymptotic solutions, which hold in the limit of weak 
noise. Physical examples where this strategy was found useful are noise in 
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dispersive optical bistability (6-s) or in Josephson junctions. (9) The weak- 
noise limit has been investigated in the mathematical literature, (1~ too. 

In the present paper we shall also be concerned with the construction 
of such asymptotic probability distributions. We shall restrict our attention 
to the probability distributions in the steady state, which are the time- 
independent solutions of Fokker-Planck equations. Physically, these are 
the most interesting solutions, since they are independent of any initial 
distribution and unique under very general conditions. Therefore, they 
reflect intrinsic properties of a system. However, mathematically, the weak- 
noise limit of the time-independent solutions of the Fokker-Planck equa- 
tions is also the most problematical one. The reason is that really two limits 
are involved: the limit t ~ o o ,  in which the steady state distribution is 
reached from an arbitrary initial distribution and the weak-noise limit. The 
weak-noise limit must be carried out after the limit t-+ ~ .  

In cases of practical relevance, it is, of course, not possible to solve the 
Fokker-Planck equation for finite times and then to follow its solution for 
t ~ ~ .  Therefore, one must replace this procedure by a reasonable assump- 
tion about the form of the solution of the Fokker-Planck equation for 
t ~ ~ .  In order to be more specific, we introduce a formal parameter ~7, 
which characterizes the small intensity of the noise. The usual assumption 
for the form of the probability density P(q,71) of the variables q = (q"}, 

= 1 , 2 , . . . ,  n in the time-independent steady state then is 

P ( q , n )  = N ( ~ ) z ( q ) e x p [ - e p ( q ) / v t  + 0 ( 7 ) ]  (1.1) 

where N(~) is a normalization constant and 0(7)  is a correction of order ~/. 
In other words, the limits 

q,(q) = lim [ - ~ In P(q,7/) ] (1.2) 
vt--+0 

lnz(q) = lim [lnP(q,~/) + q'(q)/~l  - lnN(~/) 1 (1.3) 
w--~0 

are assumed to exist. In Eq. (1.2) we assumed that lim,_~0~/lnN(~/) = 0, 
which is satisfied in all relevant cases. The function ~(q) is often called a 
nonequilibrium potential of the deterministic system obtained from the 
Fokker-Planck process for vanishing noise. (13) Clearly, q,(q) must have a 
number of properties which are implied by Eq. (1.1) such as single valued- 
ness, boundedness from below, and at least twice continuous differentia- 
bility, since (1.1) must satisfy the Fokker-Planck equation. 3 In practical 
applications the validity of the assumption (1.1) is usually not questioned. 
Instead, the success in finding at least approximate solutions for q,(q) and 

3 It appears possible that some of these conditions could be weakened, but we shall not 
investigate here the rather delicate questions which arise in this case. 
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z(q) after inserting (1.1) into the Fokker-Planck equation is accepted as a 
check on the consistency of (1.1) with the Fokker-Planck equation. 

In the present paper we want to show in a first, general part given in 
Section 2 that the ansatz (1.1) is, in fact, not a rigorous asymptotic solution 
of the Fokker-Planck equation in the generic case. The proof is given by 
showing that (1.1) can only apply rigorously, if a certain Hamiltonian 
system, which is uniquely associated with the Fokker-Planck equation, is 
completely integrable. The integrability of a Hamiltonian system is well 
known to be a nongeneric, special property. A brief account of these results 
has been presented previously. (14) In the light of these general results, the 
undeniable practical value of the ansatz (1.1) in applications may seem 
surprising. However, it is easily explained by the fact that many noninte- 
grable Hamiltonian systems show chaos only on such a small scale that it 
may, effectively, be ignored. 

We exemplify the appearance of a nonintegrable Hamiltonian system 
in the weak-noise limit of the Fokker-Planck equation in Section 3, where 
a special model is introduced. In Section 4 we give a perturbative analysis 
of the Hamiltonian system corresponding to this model. The analysis shows 
the appearance of chaos on a scale which is exponentially small in a certain 
parameter e of the model. In Section 5 we present an alternative perturba- 
tive analysis by expanding in ~. In this latter expansion the chaos in the 
Hamiltonian system is completely suppressed within the orders of e which 
we considered. Using this expansion, a useful approximate expression for 
P(q,~) in the form (1.1) can be calculated analytically, which we do in 
Section 6. In the final Section 7 we present our conclusions. 

2. WEAK-NOISE L IMIT  OF THE STEADY STATE DISTRIBUTION 

Let us consider the Fokker-Planck equation 

~P(q,~l,t) - - 3qTq ~ + -271 Q~ Oq~q ---------~32 JP(q,71, t ) (2.1) 

with given drift KP(q) and diffusion coefficients 7/Q " .  For simplicity we 
consider here only the case where the positive semidefinite symmetric 
matrix Q "  is independent of the variables q, but this restriction is not 
essential and can be removed by a straightforward generalization as long as 
Q " ( q )  remains bounded. The parameter ~/has already been mentioned. It 

is introduced as a formal device to characterize the weak-noise limit ~ ~ 0. 
The drift K~(q) and the coefficients Q p" are assumed to be independent of 
~/. As boundary conditions for Eq. (2.1) we require that the probability 
density P(q, 7, t) and its derivatives vanish at infinity. In the following we 
always assume that the rather general conditions (JS) are satisfied which 
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ensure that a unique time-independent steady state solution of (2.1) is 
reached for t ---> ~ starting from any initially given probability density, and 
we focus our attention on this time-independent steady state probability 
density. 

Making the ansatz (1.1) and assuming z v ~ 0 we obtain in the weak- 
noise limit 

~'~(q) 1 ~ (q )  ~'~(q) - 0 (2.2) K P ( q ) ~  + -~ Q"~ ~q, ~q~ 

1 o2 ,(q) ]z(q) - - + ~  Q~q~0q ~ = 0  

We note in passing that Eq. (2.2) retains its form if Q ~ depends on q, while 
Eq. (2.3) is changed by additional terms containing the first derivative of 
Q p~. The solution of (2.3) requires that we first solve (2.2). Therefore, we 
now concentrate on the solution of this equation. As was mentioned above, 
the ansatz (1.1) is meaningful if the function q~(q) is a single-valued, twice 
continuously differentiable solution of (2.2), which is bounded from below. 
As an additional boundary condition of the solution of (2.2) we require that 
q>(q) be stationary, i.e., its first derivatives vanish, in the limit sets (attrac- 
tors, repellors, saddles) of the deterministic dynamical system 

~1 ~= K'(q) (2.4) 

This condition expresses the requirement that P(q,~l) in the limit ~/--->0 
should have a local maximum in the attractors, a local minimum in the 
repellors and a saddle in the saddles of the deterministic dynamical system. 
Therefore, we are only interested in solutions of (2.2), which satisfy this 
requirement. In order to see that this requirement is compatible with Eq. 
(2.2) let us consider ep(q(t)) as a function of time, where q(t) changes 
according to (2.4). We then find from Eqs. (2.4), (2.2) 

d,/, l (2.5) 
dt - 2 Q~ ~q~ ~q~ 

Recalling that Q "  is nonnegative, we observe that ep(q(t)) cannot increase 
forward in time and cannot decrease backward in time. Since ~(q(t)) is 
assumed to be bounded from below it cannot forever decrease in time with 
a finite slope, and thus d~/dt vanishes in the limit sets. Therefore, the 
requirement that ~ becomes stationary in the limit sets is automatically 
satisfied if Q ~" is positive-definite, and it is at least compatible with (2.2) if 
Q "  is only positive semidefinite. 

Equation (2.2) can be solved by employing the methods of characteris- 

(2.3) 
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tics. This method, in the language of classical mechanics, implies that (2.2) 
is interpreted as the Hamilton-Jacobi equation 

H (  - - ~ q  ,OO(q) q] = 0 (2.6) 

for the action (/,(q) of a system with the Hamiltonian H ( p ,  q). The compari- 
son of Eq. (2.6) with (2.2) yields the explicit form of the Hamiltonian 

H (p,  q) = K~ ( q) p~ + (1/2) Q~'p~p~, (2.7) 

The canonical equations following from (2.6) are 

4 ~ = K"(q)  + Q~'p, 
OK~'(q) (2.8) 

P~ = Oq~ P~ 

They are the equations of the characteristics of Eq. (2.2). 
We are here interested only in the solutions of the time-independent 

Hamilton-Jacobi equation. These solutions are associated with the n- 
dimensional invariant manifolds of the characteristics, which, assuming for 
the moment there exist any, are written in the form 

o~,(q, oO 
P ~ -  0q ~ , l , = 1 , 2 , . . . , n  (2.9) 

The parameters ax, h = 1,2 . . . . .  n, are constants of integration, one of 
which, e.g., a I, is given by the value of the Hamiltonian (2.7), which 
vanishes according to Eq. (2.6): 

a] = H ( p , q )  ~ 0 (2.10) 

The remaining n - 1 parameters a 2 . . . .  , a, are needed to parametrize the 
invariant manifolds of Eqs. (2.8). If the Hamiltonian system (2.8) is 
completely integrable, the invariant manifolds (2.9) give a smooth foliation 
of phase space by n-dimensional hypersurfaces, and Eqs. (2.9) solved for 
a I . . . . .  a, define n smooth phase space functions, which are called con- 
stants of the motion. If the Hamiltonian system is not completely integra- 
ble, at least one of these phase-space functions is not smooth, i.e., it is 
impossible to find n constants of the motion. For instance in a system with 
2 variables, n = 2, the Hamiltonian (2.7) would be the only smooth phase- 
space function if (2.8) is not completely integrable. 

In order to extract from Eq. (2.9) the desired function 0(q), we must 
choose the parameters a x in (2.9) in such a way that 

a,l,(q, ~) 
- -  - 0 ,  t ,  = 1 . . . .  , n ( 2 . 1 1 )  Oq" 
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in the limit sets of the deterministic equation (2.4). We denote the union of 
the limit sets of (2.4) by F. We now want to analyze under which conditions 
(2.11) can be satisfied on F by an appropriate choice of the a x. 

First of all, let us note that a trivial n-dimensional invariant manifold 
S o of (2.8) always exists and is given by 

So: p~ = 0, v = 1 . . . . .  n (2.12) 

By (2.9) it corresponds to the trivial solution ~(q) = const of Eq. (2.2). On 
S o the Hamiltonian dynamics (2.8) reduces to (2.4). Therefore, all the limit 
sets of (2.4) are also limit sets of (2.8). Of course, the opposite need not be 
true. All parts of F are connected by the invariant manifold S o of (2.8). 
However, there must exist additional n-dimensional invariant manifolds of 
(2.8) transverse to S o which emanate from the different parts of F. These 
additional invariant manifolds, of course, exist only in the Hamiltonian 
system (2.8) and have no meaning in the deterministic equations (2.4) 
which are restricted to So. 

Let us now consider a particular limit set ~2 in F. Writing the n- 
dimensional invariant manifold of (2.8) transverse to S o emanating from 
this limit set f~ in the form (2.9), we define locally, in the vicinity of this 
limit set, a function ~a(q), which, by construction, satisfies Eq. (2.11) on the 
particular limit set f~ which we have chosen. We see, therefore, that it is 
always possible to choose the parameters ~x in (2.9) in such a way that 
(2.11) is at least satisfied on any single given limit set f~ of Eq. (2.4). 
However, in order to obtain an acceptable solution of Eq. (2.2) we need 
much more: we need that it be possible to choose the parameters a x in such 
a way that (2.11) is satisfied at once everywhere on F. In other words, the 
n-dimensional invariant manifolds which emanate transverse to S o from the 
different limit sets which make up F must be local parts of a single, globally 
defined manifold, pp = ~r ~, v = 1,2,.  . . . .  n, with r  for 
q--~ ~2. We conclude that in order to obtain an acceptable solution of Eq. 
(2.2) the Hamiltonian system (2.8) must admit smooth n-dimensional 
separatrices p, = OCp(q)/~q", v -- 1,2 . . . . .  n, which join the different parts 
of r in phase space. As we mentioned before, the n-dimensional invariant 
manifold S O also connects the different parts of I'. Therefore, S O and the 
smooth separatrices must form closed n-dimensional surfaces or "whiskered 
tori," which are a landmark of completely integrable Hamiltonian sys- 
tems.(16'17) 

Our considerations can, therefore, be summarized as follows. A neces- 
sary condition for the existence of a single-valued, twice continuously 
differentiable solution of Eq. (2.6), which satisfies (2.9) on F and is 
bounded from below is the complete integrability of the Hamiltonian 
system (2.8) at H --= 0. We believe that this necessary condition is actually 
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quite strong. However, it may not be a sufficient condition in all cases, e.g., 
due to the condition of single valuedness and boundedness from below. It 
is conceivable that one could construct completely integrable Hamiltonians 
of the form (2.7) for which these latter conditions are violated, even though 
we are not aware of such examples. 

We want to recall at this point that the integrability of the Hamilto- 
nian system (2.8) has also another important consequence, which was 
discussed in a previous paper, (14) namely, the existence of a potential of the 
deterministic drift K"(q). By this we mean the possibility to express K~(q) 
in terms of a q~(q) by 

1 3q~ +r~(q) (2.13) K"(q) = _ ~ Q~"-~q~ 

where the part r~(q) of K~'(q), which cannot be derived from ~(q) is a drift 
on equipotential surfaces and satisfies 

r"(q) ~ = 0 (2.14) 

It is well known that complete integrability is a very special, non- 
generic property of Hamiltonian systems. Therefore, the result which we 
have just derived has the immediate consequence that a solution q~(q) of Eq. 
(2.2) with the desired properties will usually not exist. This may seem 
surprising in view of the fact that at least to our knowledge, no single 
example has been discussed in the literature, where the ansatz (1.1) was 
found to fail. We have found, however, that at least for 2-variable systems, 
n = 2, it is very easy to construct such examples using the method of 
Poincar6 cross sections (see, e.g., Ref. 17), which reduces the dynamics (2.8) 
to a two-dimensional area-preserving map. The following sections are, 
therefore, devoted to the study of a class of concrete examples, which 
exemplify the general results of this section. 

3. T H E  M O D E L  

We consider the Fokker-Planck dynamics of an overdamped anhar- 
monic oscillator with a periodic forcing term described by a drift K~(x, y), 
where 

K'(x ,  y ) =  c(x - x 3 + f (x )cos  y)  
(3.1) 

K2(x, y)  = ~0 = const 

and a diffusion coefficient Q = (~ o ~ in (2.1). T h e  latter means that in a 
Langevin description a Gaussian white noise term would appear in the x 
equation only. We choose the time unit in such a way that ~o = 1. The 
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function f ( x )  will be represented by its Taylor series 

f ( x )  = ~ an xn (3.2) 
n = 0  

The variable y is a phase and the x, y space is the cylinder - ~ < x < ~ ,  
0 <  y < 2 ~ r .  

It follows from the general considerations (Section 2) that the Hamilto- 
nian associated with the dynamical system is given as 

H = p~/2 + px , ( x  - x 3 + f (x )cos  y)  + py (3.3) 

Without periodic perturbations ( f ( x )  =- O)y is a cyclic variable and the 
system is integrable. For H ~ 0 the solution in this case reads 

~ = - , ~  - x ~ )  _+ [ ,~ - ~)~- ~ l  ' ~  

(3.4) 
py = a 2 = const 

The manifolds (3.4) give a smooth foliation of the three-dimensional energy 
hypersurface H ---- 0. In the x, Px plane we obtain smooth curves, which are 
independent of y (Fig. 1). In particular, for small positive values of a 2 the 
cross sections of closed invariant tori appear in the region between the x 
axis and the parabolap~ ~ = - 2 c ( x  - x 3) for Ixl < 1. Integrating the equa- 

P• 

r 

0 

-0. 

-~ 0 I X 

Fig. 1. Invariant curves of the x, Px plane of the Hamiltonian system (3.7) in the integrable 
case, f ( x ) ~ 0  (c = 0.1). ! 7 and S O denote the limit sets and the hyperplane Px =Py = 0, 
respectively. 
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tions 

p X -  Ox , ; y -  (3.5) 

one may construct the solutions q~(x, y,  a2) of the corresponding Hamil ton-  
Jacobi equation. Among the different possibilities, indexed by a 2, there is, 
however, only one solution which can be considered as a potential of the 
system. Only 

qb ~ r 0 = -- e(x 2 -- x4/2)  (3.6) 

fulfills the requirement of single valuedness and twice continuous differen- 
tiability, of boundedness from below and the requirement that the two- 
dimensional manifold Px = eOeoo/Ox, Py = eOeOo/OY passes through the limit 
sets of the deterministic system (2.4) (i.e., the sets (x  = 0, 0 < y < 2~r) and 
{x = _1 ,  0 < y < 2~r}). The x axis and the curve eOeOo/OX represent 
"whiskered tori" among the limit set points. 

In the presence of a periodic perturbation the Hamiltonian system is 
no longer integrable, the whiskered tori cease to exist. As we shall see, if 
one finds a solution Px = 3~/Ox,  py = aeo/Oy which passes through one of 
the limit sets, it will not pass through the others. Wild separatrices appear 
in the system and certain trajectories become chaotic. We have numerically 
solved the Hamiltonian equations of (3.3): 

= e(x - x 3 + f (x )cos  y )  + Px 

9 = 1 (3.7) 

~b x = - epx(1 - 3x 2 + ( d f ( x ) / d x ) c o s  y )  

Py = ePxf(x)sin Y 

at H ~ 0 for different choices of f ( x )  [e.g., f ( x ) =  const, x, x3,xS, x -  x 3] 
and investigated the Poincar6 cross section (x, px) a t y  = 0. We have found 
in all cases that in the vicinity of the limit set points the motion is irregular. 
Figure 2 shows the Poincar6 cross section near the origin f o r f ( x )  = x - x 3. 
The picture is characteristic of nonintegrable Hamiltonian systems: regimes 
of regular and irregular motion can be distinguished. The borderline of the 
region investigated is the unstable separatrix emanating from P+ = (1,0). 
[For f ( x ) =  a ( x -  x 3) not only P0 = (0,0) but P•  = (_+ 1,0) remain limit 
set points, too.] 

As long as e is small, the chaotic motion occupies tiny neighborhoods 
of the limit sets only. We shall see that apart from these regions the 
separatrices can be very well approximated by smooth analytic functions, 
which render it possible to define an approximate potential for the dissipa- 
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tive system. In the next section we shall discuss two complementary 
expansion methods which help to understand the behavior of the system 
inside and outside the dominantly chaotic region. Approximate potentials 
of some dissipative models with a single attracting fixed point have been 
constructed along similar lines in Ref. 18. 

4. THE EXPANSION INf  

The first perturbative method we consider is an expansion in powers of 
f(x). The Taylor coefficients a, ,  and thus f (x)  itself, are assumed to be 
small in the region of interest. At the same time c is arbitrary. 

In a first order calculation we can write 4,(x, y) as 

O(x, y) = COo(X) + Wl(x, y) (4.1) 

where e00 is given by (3.6) and W 1 is proportional to the small parameters 
of f(x). The equation specifying W 1 follows from the Hamil ton-Jacobi  
equation to be 

0 W~ 1 O W 1 
- 2ef(x)cos y (4.2) 

~x c ( x -  x 3) ~y 
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The characteristics of the homogeneous part of Eq. (4.2) are given by 

1 x 2 
y ( x )  = - In - -  + C (4.3) 

1 - x 2 

therefore, the general solution of the homogeneous equation can be for- 
mally written as 

W,h = I ( e - i ' ( 1 -  x2)ifl20x -i/~) (4.4) 

where I is an arbitrary function. 
When looking for a particular solution of the inhomogeneous equation 

we keep only one Taylor coefficient, Gx  n, of f(x) and replace cosy  by 
exp( -  iy). At the end we take the real part of the solution obtained in this 
way and add all the contributions of the different Taylor components. 

Integrating the equation of W~ along the characteristics we obtain 

I x  ~+ 1(1 - x2)i/(2C)e-iY 
Wlp = - 2a,,e2Re 7S4_~-n~~)c 

i i n + 3  + i ] /  
•  ~ +  2 e ' 2 e '  2 2 7 '  x2 (4.5) ]J 

as a particular solution, where F stands for the hypergeometric function. 
From the general solution W I = Wlh + W1p the momentum px can be 
easily calculated by means of (4.2) to be 

3q~ 2c(x - x 3) + 1 3 W l 
Px  - -  3X --  ( ( X  --  X 3) 0 y  2a, ex"cos y (4.6) 

First we consider the case n v ~ 0 and determine the solution Px which 
satisfies the condition px(0, y ) =  0. This solution is associated with the 
stable manifold of the origin of the x, px plane. The joint requirement of 
p~(0, y) = 0 and 2~r periodicity in y uniquely fix the arbitrary function I in 
Eq. (4.4) as a constant. The function Px is, therefore, uniquely determined 
and smooth near x = 0. The same Px, however, starts to oscillate near 
x = _+ 1, i.e., the separatrix does not remain smooth in a first-order calcula- 
tion already. We may rewrite W I using the transformation formulas of the 
hypergeometric functions (~9) and obtain 

W l = - 2 a n e 2 ( 1 - x 2 ) x  n+l c o s y R e i + ( n +  l)e + s i n y l m i + ( n +  1)E 

(4.7) 
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where 

Fn(x 2) -~ F(1, n +2 3 

Consequently, 

px = - 2 c ( x  - x 3) 

Fn(X2) 
- 2a,,cx" - s i n y R e  i + (n + 1)E 

n + 3  + i ) , ~ -~-~, x 2 (4.8) 

+ c o s y  l + I m i + ( n +  1)c 

(4.9) 

Considering now the Poincar6 surface y = 0 and taking the limit Ixl-~ 1, 
the asymptotic behavior of p~ turns out to be given by 

where 

~r sgn"(x)R, 1 
P; = -an F((n + 3)/2)2e sinh(~r/2c) 1 - x 2 

• sin[ l l n ( 1 -  x 2) + arctan6,] (4.10) 

F.(x2) F.(x 2) ] 
W 1 = - 2 a ,  E2(1 - x2)x "+l e o s y R e  i - 2~ + sin Y Im / ----L--~-~ 

where 

F,,(xZ)~F(1, n+ 3 2 -  i ) - - T -  ' ~ ' l - x 2  

(4.12) 

(4.13) 

R, eiarctanS. = F((n + 1)//2 + i/2c) 
r(1 + i /2Q (4.11) 

Hence, Px exhibits oscillations with increasing amplitude as Ix[ tends to 1. 
Note, however, that the region where the wild behavior dominates is 
exponentially small for small values of e, and the oscillatory part of Px has a 
nonanalytic dependence on E. Therefore, if an c expansion is performed, it 
does not include the nonanalytic terms and provides an approximate 
smooth separatrix, as well as a corresponding approximate potential (Sec- 
tion 5). 

Instead of requiring px(O,y)= 0 we may require px(1, y ) =  0 [or, 
alternatively, p ~ ( - 1 ,  y ) =  0]. In that case the unspecified function l(u) in 
W,h (4.4) must be chosen as linear in u. After using again the transforma- 
tion formulas of the hypergeometric functions we obtain 
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The corresponding momentum now reads 

Px = - 2 E ( x  - x 3) 

- 2 a n e x  n - s i n y R e  i - 2 E  + c o s y  l + I m  i--2-~e (4.14) 

This expression, however, diverges at x -- 0. Its asymptotic behavior on the 
Poincar6 surface for x ~ 0 is given by 

TrR. 1 s in (1  tnx - a r c t a n ~ )  (4.15) 
pS = _ a, F((n + 3)/2)2c sinh(~r/2e) x 

where R, and 6, have been defined by (4.11). In the vicinity of ]x I = 1 Px 
(4.14) is a smooth function of x. At x = 1 it has a small value, 
-8a,  e3/(1 + 4e2), on the Poincar6 surface. As the slope of the unperturbed 
solution at Ix[ = 1 is 4e, we can interpret the above result by saying that Px 
(4.14) describes the unstable manifold of the new limit set points situated 
now at 

x +  = 1 + a , 2 e 2 / ( 1  + 4e2), x = - 1 + a , ( -  1)"2e2/(1 + 4e 2) (4.16) 

on the x axis. As we have seen, these separatrices exhibit oscillations with 
increasing amplitudes in the vicinity of the origin. (It is to be noted that for 
n = 0 the third limit set point does not remain in the origin, its shift is 
proportional to a0. ) 

In the limit of small values of e it is easy to estimate the width of the 
region around the limit set points where the wild behavior dominates by 
equating p~ to the unperturbed result. We obtain 

zXx = F((n + 3)/2)(2e) (n+3~/2 (4.17) 

This result shows that for modest values of n the size of the macroscopically 
chaotic regions is increasing with n in accordance with the numerical 
findings. 

The perturb~/tive method presented here loses its validity where the 
corrections to px (~ are of the same order of magnitude as p~0) itself, i.e., just 
within a region of size Ax around the limit set points. Up to the borderline 
of this region, however, the calculated curves approximate very well the 
oscillating separatrices. Figure 3 shows the separatrix emanating from the 
limit set point (1, 0) in the vicinity of the origin and the result of the f 
expansion (dashed line) for f ( x )  = a ( x  - x3), a = e = 0.1. The continuous 
line represents the stable separatrix of the origin approximated in this 
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Fig. 3. The wild separatrix of the limit set point  (1, 0) near  the origin of the Poincar~ surface 
for f ( x )  = 0.1(x - x3), c = 0.1. The dashed line is the analytic approximat ion obtained in t h e f  
expansion in first order. The full line represents p(0) = _ 2e(x - x 3) which agrees in this region 
with the m o m e n t u m  px = 3~O/ax derived f rom the approximate  potential. 

regime by p~0)_- - 2 e ( x -  x3) .  Heteroclinic points can be noticed. It is 
remarkable that the heteroclinic points generated by the curve we calcu- 
lated approximately agree well with the real ones even far inside the chaotic 
region where the curve itself is no longer a good approximation. One can 
easily see that the x coordinates of the heteroclinic points generated by the 
intersection of Px [Eq. (4.14)] and p(0) form a geometric series for small 
values of e with the quotient exp( -  c~r). 

The simple example we considered here illustrates the general property 
of Fokker-Planck models in the weak-noise limit that systems with a 
stationary distribution in the form (1.1) are special. Already a small 
perturbation of such special systems causes qualitative changes as it makes 
the associated Hamiltonian system in general nonintegrable. If one finds a 
separatrix emanating from one limit set, it does not pass through the other 
limit set and, therefore, the construction of a potential ~(q) with the 
required properties is not possible. 

On the other hand, one may use the wild separatrices in regions where 
they are smooth to construct very useful local approximations of P(q, TI) of 
the form (1.1). In particular, if we use the wild separatrix (4.14) which 
emanates smoothly from the limit set Ix I = 1 and make use of Eqs. (4.12) 
and (4.1) we find to first order in the parameter a a local approximation for 
~(x, y) near the attractors of the deterministic equations, where the proba- 
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bility density (1.1) is large. This local approximation only breaks down in a 
small vicinity of the repellor at x -- 0, which is a region where the probabil- 
ity density (1.1) is in any case very small. 

5. THE E E X P A N S I O N  

We now turn to the discussion of another perturbative method which 
provides results as power series in e and, therefore, does not reflect the 
nonanalytic dependence on this variable. As the wild oscillations of the 
separatrices are related to nonanalytic terms in c, the present expansion is 
expected to give a good approximation for the nonoscillating component of 
the separatrices. Since, however, for small values of ~ this component 
dominates apart from a tiny neighborhood of the limit set points, such an 
expansion turns out to be a powerful tool for calculating approximate 
separatrices and approximate potentials for dynamical systems. 

Owing to the simplicity of the method, we can apply it for a more 
general system than our original one given by (3.1). We consider the 
Hamilton-Jacobi equation 

2 , ax } 7x~( g(x)+ f ( x ) c ~  =0 (5.1) 

where g(x) and f(x) are arbitrary functions, and ff is known to be 2~ 
periodic in y.  The leading order solution is proportional to ~, thus, we may 
look for a solution in the form 

oo 

y) y) = y) (5.2) 
n = 0  

Here ~(x, y) is assumed to differ from a solution of Eq. (5.1) only by terms 
which are exponentially small in e. The calculation of 4~(x, y) will be 
performed here up to third order in e, which is already sufficient to 
illustrate the main ideas. Substituting (5.2) in (5.1) we find in order c that 
Oe~o/Oy = 0. In second order one obtains 

1 ( 0~0 \2 0,#o Oq, o O~ l 
. ~ ] + ~ g(x) + ~ f (x)cos y + --@-y = 0 (5.3) 

Since q)0 depends on x only, and q)1 cannot contain a term proportional t oy  
as this would mean aperiodicity in y,  the sum of the first two terms of (5.3) 
must vanish separately, leading to the results 

= - 2 f g (x)  ax (5.4) 

~, = 2g(x)f(x)sin y + G,(x) (5.5) 
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G~(x) is to be specified by the requirement of periodicity of ~. In the next 
order 

Oy - Ox [ g ( x )  - f (x)cos  y ]  (5.6) 

is found, thus ~2 may be periodic in y only if Gt(x ) is a constant. 
Integrating then (5.6) over y, one obtains 

q~2 = [ g ( x ) f ( x )  ]'[ f ( x ) c o s 2 y  - 4g(x)cos  y ] / 2  + G2(x) (5.7) 

where the prime denotes derivation. Finally, the periodicity of ~3 fixes G 2 
to be 

G2(x) = f ( x ) [ f ' ( x ) g ( x )  - f ( x ) g ' ( x ) ]  - 2 f g ( x ) f ( x ) f " ( x ) d x  (5.8) 

As an illustrative example, we consider the case f (x)  = ag(x) = a(x  - 
x 3) which belongs to the family of models which has been investigated in 
the previous section. Up to third order in �9 we obtain 

d~(X, y)  = - -e(x  2 -  x4/2)  + 2�9 -- x2)asiny 

+ c3[ax2(1 - x2)2(1 - 3x2) (acos2y  - 4 c o s y )  

+ a2x4(3 -- 4x 2 + 3x4/2)]  (5.9) 

while the corresponding momentum on the Poincar6 surface y = 0 reads 

/5 x = - 2 c ( x  - x3)(1 + r - 9x 2 + 12x 4 ) -  a2(1 - 3x 2 + 6x4)])  

(5.10) 
This approximate separatrix passes through all the limit set points ( -  1,0), 
(0, 0), (1, 0). In a vicinity of these points, which is exponentially small in c, 
the approximate separatrix Px qualitatively differs from the separatrix 
obtained in the numerical simulation or that found by means of the 
previous expansion method (Fig. 3). For small values of ~, however, Px 
provides a very good approximation in the intermediate regions. This is 
illustrated on Fig. 4 which shows the numerically calculated separatrices 
and Px in an intermediate region. Here, the separatrices coincide within the 
numerical accuracy, and they are quite well approximated by px. It is worth 
mentioning that the precision of the numerical determination of the 
separatrices can be improved by using the calculated approximate sep- 
aratrix Px near the emanating point rather than p(0) __ _ 2e(x - x3). 

Finally, we note that up to the linear terms in the parameter a ~(x, y) 
coincides with the results obtained from Eq. (4.1) by expanding both 
potentials W 1 calculated in the previous Section [i.e., (4.7) and (4.12)]. This 
fact supports the view that the oscillating parts of the wild separatrices are 
owing to nonanalytic terms. 
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Fig. 4. The separatrices of (0, 0) and (1, 0) in a region away from the limit set points. In the 
region shown, both separatrices coincide within numerical accuracy. The dashed line is the 
result of the ~ expansion [f(x)  = x - x 3, c = 0.1]. 

6. THE APPROXIMATE PROBABILITY DISTRIBUTION 

After having found the approximate potential ~(x, y) we now turn to 
the calculation of the approximate probability distribution. By substituting 

P(x, y) oc z(x, y)exp[ -~(x, y)/~] (6.1) 

into the Fokker-Planck equation (2.1) with K ~ given by (3.1) and Q~ 
defined after (3.1) one obtains for z(x, y) 

Oz( ~ )  ~z ( 1 ~2~)z 0 ( 6 . 2 ) _ _  = ~-~ e g + ~ f c o s y + - ~ x  +~-fy+ e g ' + c f ' c o s y + ~  0x 2 

which is Eq. (2.3) specialized to the present example. 
The ( expansion of this equation can be worked out along similar lines 

as that of (5.1) after @ has been determined in powers of (. We may now 
write 

z(x, y) = ~ ,nz,(x, y) (6.3) 
n=O 

It then follows from the leading order term that z 0 may depend on x only. 
Using (5.4), the terms proportional to e give 

Oz 1 Oy - z'~ - f(x)cos y) - Zo(X)f'(x)cos y (6.4) 
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As the periodici ty of z~ in y requires z 0 to be  constant ,  we find 

z~(x,  y )  = - z o f ' ( x ) s i n  y + h i ( x )  (6.5) 

Proceeding in a similar way up to order  ~2 one finds that  the arbi t rary  
funct ion hl (x  ) of Eq. (6.5) mus t  be  a constant  and  one obtains,  apar t  f rom 
a mult ipl icat ive constant ,  for the prefac tor  

z ( x ,  y )  = 1 - c f ' (x )s in  y 

+ c2{[ g"(x) f (x )  + 2g'(x) f ' (x)  + 2g(x)f"(x)]cosy 
+ [2f(x)f"(x) - f,2(x) ] / 4  

- [  f ( x ) f " ( x )  + fn(x) ] (cos 2y) /4 }  (6.6) 

W e  evaluate  this expression again  for f ( x )  = ag(x )  = a ( x  - x 3) to find 

z ( x ,  y)  = 1 - ca(1 - 3xe)sin y 

+ r a (2  - 30x 2 + 36x4)cos y 

- a2(1 - 12x 2 + 1 5 x 4 ) ( c o s 2 y ) / 4  - a2(6x 2 - 3x 4 + 1 ) / 4 ]  

(6.7) 

Figure 5 shows the corresponding probabi l i ty  distr ibution (6.1) at a = 1, 

\ I 1 " ~  

)::' . . . . .  

' I ! 

�9 ~ 1 I _ _  E 

1 . 0 ,  

� 9  

- 2  L_,, C 1 2 X 

Fig. 5. The approximate probability distribution (6.1) for c = ~/= 0.1, a = 1, y = 0 normal- 
ized in such a way that the maximum values are unity. The distribution without the prefactor 
is given by the dashed line, that corresponding to the integrable case (a = 0) is given by the 
dotted line. 
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�9 = ~ = 0.1 for y = 0. In order to see the influence of the prefactor z, the 
distribution P cc e x p ( - ~ / ~ )  and the distribution for the integrable case 
f -- 0 are also shown. It is to be noted that, owing to the prefactor z, the 
most probable states are shifted away from x = + 1. This shows that for 
small but finite ~ the most probable states are close to but not identical 
with the deterministic attractors. 

7. C O N C L U D I N G  R E M A R K S  

We have shown in this paper that Fokker-Planck models with a 
unique steady state probability density may be subdivided into two classes 
which are distinguished by their behavior in the weak-noise limit. 

In the first class, which is rather special, fall all Fokker-Planck models 
for which the associated Hamiltonian (2.7) is completely integrable. As we 
have shown, the first class contains all Fokker-Planck models whose steady 
state probability density is of the form (1.1) in the weak-noise limit. 

In the second class fal l  all Fokker-Planck models with nonintegrable 
Hamiltonian (2.7). Therefore, this class is much broader than the first one. 
The models in this class do not have a steady state probability density of 
the form (1.1) with the required properties in the weak-noise limit. 

Important members of the first class are Fokker-Planck models de- 
scribing fluctuations in thermodynamic equilibrium. Here, the existence of 
a solution ~(q) of the Hamilton-Jacobi equation (2.6) is ensured by the 
potential conditions3 2~ According to these conditions K~(q) and Q ~  may 
be written as 

1 O+(q) +r"(q) (7.1) K~(q) = - -~ Q "  Oq, 

where g,(q) is a thermodynamic potential and where the first part on the 
right-hand side transforms like q" under the microscopically defined trans- 
formation of time reversal, while the second part, r"(q), transforms like q~. 
4(q) and r"(q) satisfy, in addition to (7.1), 

ar"(q) 
71 Oq, r"(q) Oq ~ - 0  (7.2) 

From Eqs. (7.l), (7.2) it follows that q,(q) is a solution of the Hamilton- 
Jacobi equation in the limit ~--~ 0. 

Fokker-Planck models of nonequilibrium systems will usually fall into 
the second class. Exceptions are one-variable systems with natural bound- 
ary conditions at infinity, and linear Gaussian systems, described by 
Ornstein-Uhlenbeck processes. For these systems the Hamiltonian (2.7) is 
always integrable, i.e., they belong to the first class. 
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Even though most nonequilibrium systems will not have a steady state 
probability density of the form (1.1) in the weak-noise limit, Eq. (1.1) still 
remains useful as an approximate ansatz. Furthermore, by a judicious 
choice of the solution it is possible, in many examples, to confine the 
regions where the solution breaks down to the vicinity of repellors or 
saddles of the deterministic system, where the probability density of the 
stochastic system is, in any case, small. In order to illustrate these points we 
have discussed specific models in Sections 3-6. They provide explicit 
examples of nonintegrable Hamiltonians of the form (2.7) and they illus- 
trate the usefulness of the ansatz (1.1) for obtaining approximate densities 
in the steady state. 
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